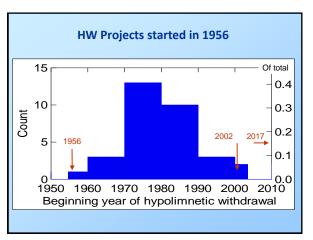
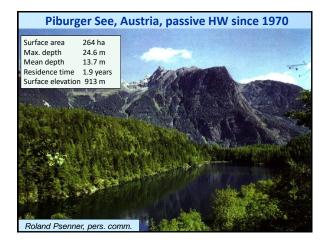
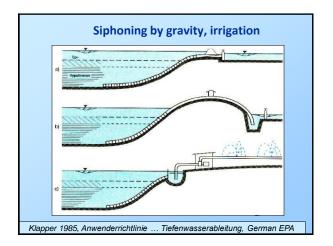
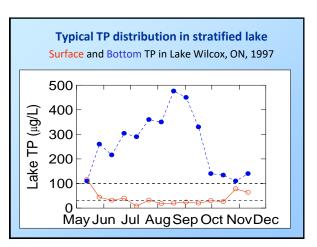

Thanks for the invitation to the Lahti Lake Restoration conference in Finland, June 2018, and to People involved in HW:

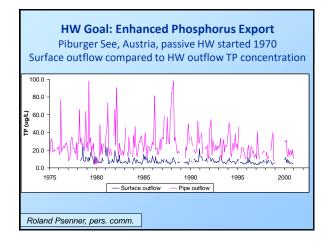

- Johanna Ansker, Stockholm Vatten
- Al Sosiak, MOE Alberta
- Dick Lathrop, MOE Wisconsin
- Harry Gibbons, Seattle Washington
- Roland Psenner, Austria
- Julita Dunalska, Poland
- Špela Rekar, Slovenia
- Michael Hupfer, Germany
- Ingrid Chorus, Germany
- Rene Gächter, Switzerland
- Pius Niederhauser, Switzerland


Outline

- HW Principle: decrease the effect of internal P loading
- Importance of hydrology and timing
- Benefits re trophic state
 - Phosphorus (P)
 - Phytoplankton, Cyanobacteria
 - Anoxia
- Potential problems
 - In lake: warming of hypolimnion, destratification
 - Downstream: Treatment of withdrawal water









Principal: Maximize P export to decrease the effect of internal loading

- Maximize withdrawal volume w/o drawing down the lake (hydrology).
 - Naturally high water loads
 - Artificially enhance flushing
- Adjust timing to withdraw in late summer and fall, when concentrations of nutrients and reduced substances are highest.

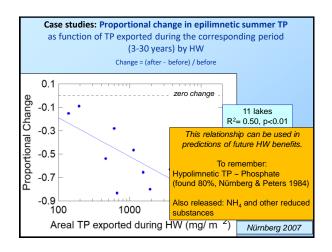
Dependency on hydrology

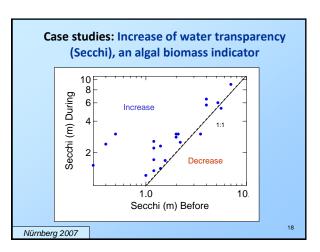
Annual variation of flows (case studies)

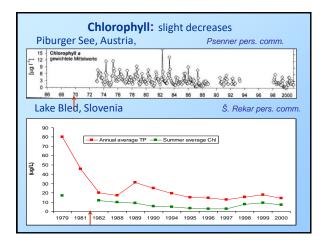
- Pine Lake, Red Deer, Alberta
 Annual precipitation ~490 mm
 HW possible 7 of 10 years (70%) based on historic rainfall, actual 4.5 of 7 yrs (64%).
- Lake Kortowskie, Poland, Baltic catchment Annual precipitation >600 mm
 Potential benefit for climate change induced summer rain storms: In wet year 2011, more input, more water available for outflow, higher
 P export compared to long-term average.

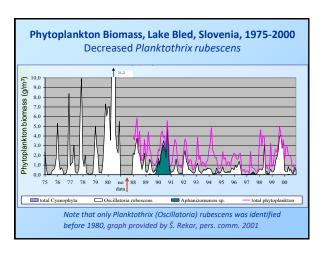
14

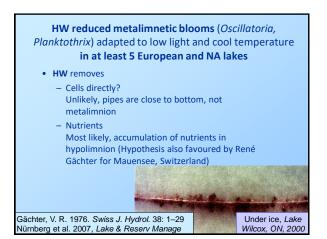
Results: Water quality benefits due to HW

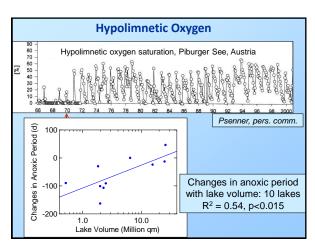

- Decline of TP: yes, related to TP export via HW
- Decline of phytoplankton as Secchi, chlorophyll, cyanobacterial blooms: yes/indications
 - Metalimnetic cyanobacteria declined
 - Surface bloomers (harmful algal blooms, HABs)
- Decline of anoxia: after a lag, but eventually


Case studies: Epilimnetic TP – before versus during HW


21 lakes
R²= 0.79, p<0.0001

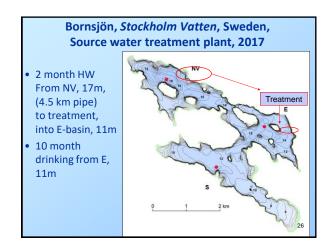

100
Epilimnetic TP Before (µg/L)

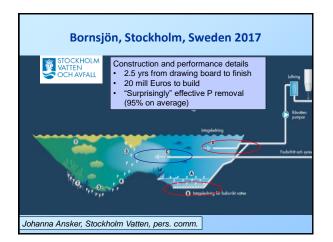

LahtiLakes 2018 Restoration of eutrophic lakes



Potential HW-related problems in the lake

- Hypolimnetic temperature increase
 - Enhances P release
 P release rate increases by a factor of 2-7 for every
 10 °C increases (Q10 rule, e.g., Liikanen et al. 2002)
 - Enhances oxygen depletion
 Sediment oxygen demand increase by 6.8 % per °C
 (e.g., Livingstone and Schanz 1994)
 - Induces early fall turnover
- Case study: No increase in hypolimnetic summer temperature at withdrawn water load < 1 m/yr (in 6 lakes)


23


Downstream Effects

- Possible benefits Decreases in
 - Temperature
 - Phytoplankton biomass
 - Turbidity

Downstream Consequences and Treatment

- Possible problems
 - Reduced substances (Anoxia, H₂S, odour)
 - Increased nutrients (Phosphate, Ammonia)
- Treatment options
 - Anoxia: Fountain aerator
 - Smelly gas, H₂S: Building & diversion
 - Nutrient: Settling basin
 - Diversion and treatment in wastewater treatment plant
 - Dilute with surface water
 - Elevate withdrawal intake
 - Decrease and discontinue withdrawal

Kymijärvi, Finland, 2018 Experimental stage Hypolimnetic TP = 3 x epilimnetic TP Remove water, treat, and return Treatment with CaOH₂ filters that allow P recovery, and wetland

Reservoirs

- Many reservoirs operate with deep water release that help reservoir water quality, even if it's not deliberate (e.g., Cherry Creek Lake in Denver, Colorado).
- Different Goals via water column destabilization and prevention of stagnant conditions:
 - Improve hypolimnetic and withdrawal water (especially in drinking water reservoirs)
 - Decrease surface HABs (Ford Lake, Eau Galle reservoir)

29

Challenges in HW Praxis

- Lack of water (inflow augmentation)
- Outflow is of wastewater quality (treatment)
- Accidental destratification (add cool water at depth, regulate outflow)
- Needed stratification (deep hole)
- Short stratification period (in northern lakes, but may increase with climate change)
- Beaver damming the outflow (management, re-routing)
- Floating pipe(add weights)
- Lack of long-term commitment

What is crucial for the success of HW?

- **Bottom TP >> surface TP**: stratified, deep hole, not polymictic
- Hydrology enough water to operate during summer and fall: high water load q_s
 Remedy: inflow augmentation, recycling after treatment
- Space and support for withdrawal treatment to protect downstream water

References

- Dunalska JA. 2002. Influence of limited water flow in a pipeline on the nutrient budget in a lake restored by hypolimnetic withdrawal method. Pol J Environ Stud. 11:631–637.
- Dunalska JA, Wiśniewski G, Mientki C. 2007. Assessment of multi-year (1956–2003) hypolimnetic withdrawal from Lake Kortowskie, Poland. Lake and Reservoir Management. 23:377–387.
- Gächter VR. 1976. Die Tiefenwasserableitung, ein Weg zur Sanierung von Seen. Swiss J Hydrol. 38:1–29.
 Mientki C, Dunalska J. 2001. Phosphorus balance at various water flows in the lake
- restored by hypolimnetic withdrawal. Ecohydrology & Hydrobiology.

 Nürnberg GK. 1987. Hypolimnetic withdrawal as a lake restoration technique. Societ
- Nürnberg GK. 1987. Hypolimnetic withdrawal as a lake restoration technique. Society of Civil Engineers America J Environ Eng. 113:1006–1017.
 Nürnberg GK. 2007. Lake responses to long-term hypolimnetic withdrawal treatments
- Lake Reserv Manage. 23:388–409.

 Nürnberg GK, Hartley R, Davis 1997. Hypolimnetic withdrawal in two North American lakes with anoxic phosphorus release from the sediment. Water Res. 21:923–928.
- Olszewski P. 1973. Fünfzehn Jahre Experiment auf dem Kortowo-See. Verh Internat Verein Limnol. 18:1792–1797.
- Premazzi G, Austoni M, Chiaudani G, Rodari E, Cardoso AC. 2005. Hypolimnetic withdrawal coupled with oxygenation as lake restoration measures: the successful case of Lake Varese (Italy). Limnetica. 24:123–131.
- Psenner R. 1988. Long-term changes in the chemical composition of a meromictic lake after hypolimnetic withdrawal. Verh Internat Verein Limnol. 23:516.
- Schauser I, Chorus I. 2007. Assessment of internal and external lake restoration measures for two Berlin lakes. Lake Reserv Manage. 23:366–376.

32